
environment.py Documentation
Release 1.0.0

Gittip, LLC

August 31, 2015

Contents

1 Rationale 3

2 Installation 5

3 Tutorial 7

4 API Reference 9

Python Module Index 11

i

ii

environment.py Documentation, Release 1.0.0

This library provides parsing and validation of environment variables.

Contents 1

environment.py Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Rationale

Configuration via environment variables has become popular with the rise of twelve-factor apps, yet few Python
libraries exist to help with it (despite the abundance of libraries for command line and file configuration).

When I looked around, most of the solutions I found involved using os.environ directly, or overloading somewhat
related libraries such as argparse or formencode. The former are not robust enough with regards to typecasting
and error handling. The latter are inappropriate and overengineered: the reason to prefer envvar configuration in the
first place is to reduce complexity, not compound it. We need something designed specifically and solely for taking
configuration from environment variables.

The one library I found is python-decouple, which does indeed rationalize typecasting of environment variables.
However, it also handles file configuration, which adds unwanted complexity and (ironically) muddying of concerns.
Additionally, it doesn’t enable robust error messaging. The problem with error handling in decouple and in ad-hoc
usage of os.environ is that if you have four environment variables wrong, you only find out about them one at a
time. We want to find out about all problems with our configuration at once, so that we can solve them all at once
instead of playing configuration roulette (“Will it work this time? No! How about now?”).

This present library is designed to be small in scope, limited to environment variables only, and to support robust error
messaging. Look into foreman and honcho for process management tools to complement this library.

3

http://12factor.net/config
https://twitter.com/whit537/status/450780504921755648
https://pypi.python.org/pypi/python-decouple
http://ddollar.github.io/foreman/
http://honcho.readthedocs.org/en/latest/

environment.py Documentation, Release 1.0.0

4 Chapter 1. Rationale

CHAPTER 2

Installation

environment is available on GitHub and on PyPI:

$ pip install environment

We test against Python 2.6, 2.7, 3.2, and 3.3.

environment is MIT-licensed.

5

https://github.com/gittip/environment.py
https://pypi.python.org/pypi/environment
https://travis-ci.org/gittip/environment.py

environment.py Documentation, Release 1.0.0

6 Chapter 2. Installation

CHAPTER 3

Tutorial

First let’s pretend that this is our os.environ:

>>> pretend_os_environ = { 'FOO': '42'
... , 'BAR_BAZ': 'buz'
... , 'BAR_BLOO_BLOO': 'yes'
... , 'BAD': 'to the bone'
... }

And let’s import our stuff:

>>> from environment import Environment, is_yesish

The way the environment library works is you instantiate an Environment class like so:

>>> env = Environment(FOO=int
... , BLAH=str
... , BAD=int
... , environ=pretend_os_environ
...)

Keyword arguments specify which variables to look for and how to typecast them. Since a process environment
contains a lot of crap you don’t care about, we only parse out variables that you explicitly specify in the keyword
arguments.

The resulting object has lowercase attributes for all variables that were asked for and found:

>>> env.foo
42

There are also missing and malformed attributes for variables that weren’t found or couldn’t be typecast:

>>> env.missing
['BLAH']
>>> env.malformed
[('BAD', "ValueError: invalid literal for int() with base 10: 'to the bone'")]

You’re expected to inspect the contents of missing and malformed and do your own error reporting. You’re also
expected to handle defaults yourself at a higher level—this is not a general-purpose configuration library—though the
parsed dictionary should help with that:

>>> env.parsed
{'foo': 42}

If all of the environment variables you care about share a common prefix, you can specify this to the constructor to
save yourself some clutter:

7

environment.py Documentation, Release 1.0.0

>>> bar = Environment('BAR_'
... , BAZ=str
... , BLOO_BLOO=is_yesish
... , environ=pretend_os_environ
...)
>>> bar.baz
'buz'
>>> bar.bloo_bloo
True

8 Chapter 3. Tutorial

CHAPTER 4

API Reference

class environment.Environment(prefix=’‘, spec=None, environ=None, **kw)
Represent a whitelisted, parsed subset of a process environment.

Parameters

• prefix (string) – If all of the environment variables of interest to you share a common
prefix, you can specify that here. We will use this prefix when pulling values out of the
environment, and the attribute names you end up with won’t include the prefix.

• spec (mapping) – A mapping of environment variable names to typecasters.

• environ (mapping) – By default we look at os.environ, of course, but you can over-
ride that with this. We operate on a shallow copy of this mapping (though it’s effectively a
deep copy in the normal case where all values are strings, since strings are immutable).

• kw – Keyword arguments are folded into spec.

The constructor for this class loops through the items in environ, skipping those variables not also
named in spec, and parsing those that are, using the type specified. Under Python 2, we harmo-
nize with Python 3’s behavior by decoding environment variable values to unicode using the result of
sys.getfilesystemencoding before typecasting. The upshot is that if you want typecasting to be a
pass-through for a particular variable, you should specify the Python-version-appropriate string type: str for
Python 3, unicode for Python 2. We store variables using lowercased names, so MYVAR would end up at
env.myvar:

>>> env = Environment(MYVAR=int, environ={'MYVAR': 42})
>>> env.myvar
42

If a variable is mentioned in spec but is not in environ, the variable name is recorded in the missing
list. If typecasting a variable raises an exception, the variable name and an error message are recorded in the
malformed list:

>>> env = Environment(MYVAR=int, OTHER=str, environ={'MYVAR': 'blah'})
>>> env.missing
['OTHER']
>>> env.malformed
[('MYVAR', "ValueError: invalid literal for int() with base 10: 'blah'")]

If prefix is provided, then we’ll add that to the variable names in spec when reading the environment:

>>> foo = Environment('FOO_', BAR=int, environ={'FOO_BAR': '42'})
>>> foo.prefix
'FOO_'

9

environment.py Documentation, Release 1.0.0

>>> foo.bar
42

The copy of environ that we act on is stored at environ:

>>> foo.environ
{'FOO_BAR': '42'}

All parsed variables are stored in the dictionary at parsed:

>>> foo.parsed
{'bar': 42}

Use the parsed dictionary, for example, to fold configuration from the environment together with configuration
from other sources (command line, config files, defaults) in higher-order data structures. Attribute access for
non-class attributes on Environment instances uses parsed rather than __dict__, which means that you
can set attributes on the instance and they’re reflected in parsed:

>>> foo.bar = 537
>>> foo.parsed
{'bar': 537}

But setting attributes doesn’t modify environ:

>>> foo.environ
{'FOO_BAR': '42'}

static parse(prefix, spec, environ, encoding)
Heavy lifting, with no side-effects on self.

Parameters

• prefix (string) – The string to prefix to variable names when looking them up in
environ.

• spec (mapping) – A mapping of environment variable names to typecasters.

• environ (mapping) – A mapping of environment variable names to values.

• encoding (string) – The encoding with which to decode environment variable values
before typecasting them, or None to suppress decoding.

Returns A three-tuple, corresponding to missing, malformed, and parsed.

environment.is_yesish(value)
Typecast booleanish environment variables to bool.

Parameters value (string) – An environment variable value.

Returns True if value is 1, true, or yes (case-insensitive); False otherwise.

10 Chapter 4. API Reference

Python Module Index

e
environment, 3

11

environment.py Documentation, Release 1.0.0

12 Python Module Index

Index

E
Environment (class in environment), 9
environment (module), 1

I
is_yesish() (in module environment), 10

P
parse() (environment.Environment static method), 10

13

	Rationale
	Installation
	Tutorial
	API Reference
	Python Module Index

