

 Navigation

 	
 index

 	
 modules |

 	environment.py 1.0.0 documentation

environment.py

This library provides parsing and validation of environment variables.

Rationale

Configuration via environment variables has become popular with the rise of
twelve-factor apps [http://12factor.net/config], yet few Python libraries exist to help with it (despite
the abundance of libraries for command line and file configuration).

When I looked around [https://twitter.com/whit537/status/450780504921755648], most of the solutions I found involved using
os.environ directly, or overloading somewhat related libraries such
as argparse or formencode. The former are not robust enough
with regards to typecasting and error handling. The latter are inappropriate
and overengineered: the reason to prefer envvar configuration in the first
place is to reduce complexity, not compound it. We need something designed
specifically and solely for taking configuration from environment variables.

The one library I found is python-decouple [https://pypi.python.org/pypi/python-decouple], which does indeed rationalize
typecasting of environment variables. However, it also handles file
configuration, which adds unwanted complexity and (ironically) muddying of
concerns. Additionally, it doesn’t enable robust error messaging. The problem
with error handling in decouple and in ad-hoc usage of
os.environ is that if you have four environment variables wrong, you
only find out about them one at a time. We want to find out about all problems
with our configuration at once, so that we can solve them all at once instead
of playing configuration roulette (“Will it work this time? No! How about
now?”).

This present library is designed to be small in scope, limited to environment
variables only, and to support robust error messaging. Look into foreman [http://ddollar.github.io/foreman/] and
honcho [http://honcho.readthedocs.org/en/latest/] for process management tools to complement this library.

Installation

environment is available on GitHub [https://github.com/gittip/environment.py] and on PyPI [https://pypi.python.org/pypi/environment]:

$ pip install environment

We test [https://travis-ci.org/gittip/environment.py] against
Python 2.6, 2.7, 3.2, and 3.3.

environment is MIT-licensed.

Tutorial

First let’s pretend that this is our os.environ:

>>> pretend_os_environ = { 'FOO': '42'
... , 'BAR_BAZ': 'buz'
... , 'BAR_BLOO_BLOO': 'yes'
... , 'BAD': 'to the bone'
... }

And let’s import our stuff:

>>> from environment import Environment, is_yesish

The way the environment library works is you instantiate an
Environment class like so:

>>> env = Environment(FOO=int
... , BLAH=str
... , BAD=int
... , environ=pretend_os_environ
...)

Keyword arguments specify which variables to look for and how to typecast them.
Since a process environment contains a lot of crap you don’t care about, we
only parse out variables that you explicitly specify in the keyword arguments.

The resulting object has lowercase attributes for all variables that were asked
for and found:

>>> env.foo
42

There are also missing and
malformed attributes for variables that weren’t found
or couldn’t be typecast:

>>> env.missing
['BLAH']
>>> env.malformed
[('BAD', "ValueError: invalid literal for int() with base 10: 'to the bone'")]

You’re expected to inspect the contents of missing and
malformed and do your own error reporting. You’re also
expected to handle defaults yourself at a higher level—this is not a
general-purpose configuration library—though the
parsed dictionary should help with that:

>>> env.parsed
{'foo': 42}

If all of the environment variables you care about share a common prefix, you
can specify this to the constructor to save yourself some clutter:

>>> bar = Environment('BAR_'
... , BAZ=str
... , BLOO_BLOO=is_yesish
... , environ=pretend_os_environ
...)
>>> bar.baz
'buz'
>>> bar.bloo_bloo
True

API Reference

	
class environment.Environment(prefix='', spec=None, environ=None, **kw)

	Represent a whitelisted, parsed subset of a process environment.

	Parameters:	
	prefix (string) – If all of the environment variables of interest to
you share a common prefix, you can specify that here. We will use this
prefix when pulling values out of the environment, and the attribute
names you end up with won’t include the prefix.

	spec (mapping) – A mapping of environment variable names to typecasters.

	environ (mapping) – By default we look at os.environ, of
course, but you can override that with this. We operate on a shallow
copy of this mapping (though it’s effectively a deep copy in the normal
case where all values are strings, since strings are immutable).

	kw – Keyword arguments are folded into spec.

The constructor for this class loops through the items in environ,
skipping those variables not also named in spec, and parsing those that
are, using the type specified. Under Python 2, we harmonize with Python
3’s behavior by decoding environment variable values to unicode
using the result of sys.getfilesystemencoding before
typecasting. The upshot is that if you want typecasting to be a
pass-through for a particular variable, you should specify the
Python-version-appropriate string type: str for Python 3,
unicode for Python 2. We store variables using lowercased
names, so MYVAR would end up at env.myvar:

>>> env = Environment(MYVAR=int, environ={'MYVAR': 42})
>>> env.myvar
42

If a variable is mentioned in spec but is not in environ, the
variable name is recorded in the missing list. If typecasting a
variable raises an exception, the variable name and an error message are
recorded in the malformed list:

>>> env = Environment(MYVAR=int, OTHER=str, environ={'MYVAR': 'blah'})
>>> env.missing
['OTHER']
>>> env.malformed
[('MYVAR', "ValueError: invalid literal for int() with base 10: 'blah'")]

If prefix is provided, then we’ll add that to the variable names in
spec when reading the environment:

>>> foo = Environment('FOO_', BAR=int, environ={'FOO_BAR': '42'})
>>> foo.prefix
'FOO_'
>>> foo.bar
42

The copy of environ that we act on is stored at
environ:

>>> foo.environ
{'FOO_BAR': '42'}

All parsed variables are stored in the
dictionary at parsed:

>>> foo.parsed
{'bar': 42}

Use the parsed dictionary, for example, to fold
configuration from the environment together with configuration from other
sources (command line, config files, defaults) in higher-order data
structures. Attribute access for non-class attributes on
Environment instances uses parsed
rather than __dict__, which means that you can set attributes on
the instance and they’re reflected in parsed:

>>> foo.bar = 537
>>> foo.parsed
{'bar': 537}

But setting attributes doesn’t modify environ:

>>> foo.environ
{'FOO_BAR': '42'}

	
static parse(prefix, spec, environ, encoding)

	Heavy lifting, with no side-effects on self.

	Parameters:	
	prefix (string) – The string to prefix to variable names when
looking them up in environ.

	spec (mapping) – A mapping of environment variable names to
typecasters.

	environ (mapping) – A mapping of environment variable names to
values.

	encoding (string) – The encoding with which to decode environment
variable values before typecasting them, or None to
suppress decoding.

	Returns:	A three-tuple, corresponding to
missing, malformed,
and parsed.

	
environment.is_yesish(value)

	Typecast booleanish environment variables to bool.

	Parameters:	value (string) – An environment variable value.

	Returns:	True if value is 1, true, or yes
(case-insensitive); False otherwise.

 Copyright Gittip, LLC.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	environment.py 1.0.0 documentation

 Python Module Index

 e

 			

 		
 e	

 	
 	
 environment	

 Copyright Gittip, LLC.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	environment.py 1.0.0 documentation

Index

 E
 | I
 | P

E

 	

 	Environment (class in environment)

 	

 	environment (module)

I

 	

 	is_yesish() (in module environment)

P

 	

 	parse() (environment.Environment static method)

 Copyright Gittip, LLC.
 Created using Sphinx 1.2.

 _static/file.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		environment.py 1.0.0 documentation »

 All modules for which code is available

		environment

 © Copyright Gittip, LLC.
 Created using Sphinx 1.2.

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		environment.py 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Gittip, LLC.
 Created using Sphinx 1.2.

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

